Recent advances in the interfacial stability, design and in situ characterization of garnet-type Li7La3Zr2O12 solid-state electrolytes based lithium metal batteries

نویسندگان

چکیده

Solid-state electrolyte (SSE) coupled with Li metal anode, is one of the very promising architecture designs to achieve all-solid-state batteries (ASSBs) for advanced next-generation energy storage technology in expectation boosted density, power, and increased safety. Among reported SSEs, garnet-type Li7La3Zr2O12 (LLZO) SSEs have attracted wide interest terms their relatively high ionic conductivity good chemical stability against metal. However, there an increasing amount recent research pointing out interfacial (electro)chemical instabilities between LLZO electrodes (Li anode cathode), which hinder commercial-scale applications. In this review, we introduce challenges at both LLZO/Li LLZO/cathode interfaces revealed by works. We also review summarize diverse on mitigating such instabilities, situ characterization techniques understand these issues.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent Advances in Inorganic Solid Electrolytes for Lithium Batteries

Present address: Xiao-Liang Wang, Seeo, Inc., 3906 Trust Way, Hayward, CA 94545, USA The review presents an overview of the recent advances in inorganic solid lithium ion conductors, which are of great interest as solid electrolytes in all-solid-state lithium batteries. It is focused on two major categories: crystalline electrolytes and glass-based electrolytes. Important systems such as thio-L...

متن کامل

Negating interfacial impedance in garnet-based solid-state Li metal batteries.

Garnet-type solid-state electrolytes have attracted extensive attention due to their high ionic conductivity, approaching 1 mS cm-1, excellent environmental stability, and wide electrochemical stability window, from lithium metal to ∼6 V. However, to date, there has been little success in the development of high-performance solid-state batteries using these exceptional materials, the major chal...

متن کامل

Development of Lithium-Stuffed Garnet-Type Oxide Solid Electrolytes with High Ionic Conductivity for Application to All-Solid-State Batteries

Citation: Inada R, Yasuda S, Tojo M, Tsuritani K, Tojo T and Sakurai Y (2016) Development of LithiumStuffed Garnet-Type Oxide Solid Electrolytes with High Ionic Conductivity for Application to All-Solid-State Batteries. Front. Energy Res. 4:28. doi: 10.3389/fenrg.2016.00028 Development of lithium-stuffed garnet-Type Oxide solid electrolytes with high ionic conductivity for application to all-so...

متن کامل

Experimental visualization of lithium conduction pathways in garnet-type Li7La3Zr2O12.

The evolution of the Li-ion displacements in the 3D interstitial pathways of the cubic garnet-type Li(7)La(3)Zr(2)O(12), cubic Li(7)La(3)Zr(2)O(12), was investigated with high-temperature neutron diffraction (HTND) from RT to 600 °C; the maximum-entropy method (MEM) was applied to estimate the Li nuclear-density distribution. Temperature-driven Li displacements were observed; the displacements ...

متن کامل

Gallium-Doped Li7La3Zr2O12 Garnet-Type Electrolytes with High Lithium-Ion Conductivity.

Owing to their high conductivity, crystalline Li7-3xGaxLa3Zr2O12 garnets are promising electrolytes for all-solid-state lithium-ion batteries. Herein, the influence of Ga doping on the phase, lithium-ion distribution, and conductivity of Li7-3xGaxLa3Zr2O12 garnets is investigated, with the determined concentration and mobility of lithium ions shedding light on the origin of the high conductivit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ceramics International

سال: 2021

ISSN: ['0272-8842', '1873-3956']

DOI: https://doi.org/10.1016/j.ceramint.2021.02.034